a2 United States Patent

Poutievski et al.

US009455911B1

US 9,455,911 B1
Sep. 27,2016

(10) Patent No.:
45) Date of Patent:

(54) IN-BAND CENTRALIZED CONTROL WITH
CONNECTION-ORIENTED CONTROL
PROTOCOLS

(71) Applicant: Google Inc., Mountain View, CA (US)

(72) Inventors: Leon Poutievski, Santa Clara, CA
(US); Amin Vahdat, Los Altos, CA
(US)

(73) Assignee: Google Inc., Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 277 days.

(21) Appl. No.: 14/143,871

(22) Filed: Dec. 30, 2013
(51) Imt.CL
HO4L 12724
HO4L 12/741
(52) US. CL
CPC ..o HO4L 45/745 (2013.01)
(58) Field of Classification Search
CPC ... HO4L 67/10; HO4L 69/16; HO4L 67/42,
HO4L 65/80; HO4L 47/10; HO4L 45/64,
HO4L 45/38; HO4L 12/28; HO4L 12/743
USPC ... 370/235, 359, 389, 392, 394, 400, 401,
709/227
See application file for complete search history.

(2006.01)
(2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

7,400,634 B2 7/2008 Higashitaniguchi et al.
2008/0205388 Al* 82008 Colville HO04L 45/26
370/389
2010/0161741 Al* 6/2010 Jiangccc.. HO04L 63/02
709/206
2010/0260183 Al* 10/2010 Miyoshi HO04L 45/00
370/392

OTHER PUBLICATIONS

Appendix A; InfiniBand Concepts; Al-Al12, retrieved from the
Internet on Dec. 30, 2013, at <http://www.cisco.com/en/US/docs/
server__nw_ virtual/2.9.0__update1/2.9.0_ release/element__man-
ager/appA.pdf>.

McKeown, N.; OpenFlow: Enabling Innovation in Campus Net-
works; (2008).

OpenFlow Switch Specification; Version 1.1.0 Implemented (Wire
Protocol 0x02) (2011).

Pfister; An Introduction for the Infiniband Architecture; Chaper 42;
pp. 617-632, retrieved from the Internet on Dec. 30, 2013, at
<http://gridbus.csse.unimelb.edu.au/~raj/superstorage/chap42.
pdf>.

* cited by examiner

Primary Examiner — Charles C Jiang
Assistant Examiner — Wali Butt
(74) Attorney, Agent, or Firm — McDermott Will & Emery

(57) ABSTRACT

Aspects of the disclosure relate generally to switches
responding to master controllers before establishing a secure
connection in an in-band controlled network. In order to do
s0, a computing device may receive a request packet from a
transmitting device, the request packet originating from a
controller computer. When the request packet enters a des-
ignated port on the computing device, the computing device
may identify routing data from the received request packet,
the routing data indicating a path to respond to the controller
computer. The computing device may next populate a table
using the identified routing data of the request packet. The
computing device may send a response packet to the con-
troller computer using the identified routing data in the
populated table. From here, a connection may be established
between the computing device and controller computer.

17 Claims, 8 Drawing Sheets

Switch

]Pmcessors 132

‘Sw'da‘.ing Fabric 123 |

Memory 134

Swiich

{Processors 152

ing Fabsic 123 1

{Memory 154

US 9,455,911 B1

Sheet 1 of 8

Sep. 27, 2016

U.S. Patent

¥} SHOd AGL SUOH
2y e | Gl e
145 mCOﬁOQmMQm 05 _ 951 SUDIDn \mmcw
Frl Aowsi - Koy
o 51 W
| £71 duged Buoums| | £z1 suges Bugoums|
Z¥i s08sE04d] Zg1 S308530044|
OUMS UOUMS
/,/f/,f ;
R W
e
BEL SpO| N
%iz.i,ii%ttztx\ ot 7 08
8c1 epen)|

90} SUORINARU] _

ol Asowsy

| ¢zi ougey Butoumg)

%t m%ommmuﬁa_

621 Spod)|

BZ1 eeg|

9z} suopInusuy|

HOHMG 23 Aoisiy
OMWW . ; .
| EEL ouqed ?EE?&
-1 77} Si088a30d
AN A |

MG

bEAHNSIH

64

§91 3pud

89t Byeg!

GO} SUOHONASH |

$ay Acwiepy

£ ouned Bupoumag

78} RIOSSE0Id

Yayiag

i1 By

811 suopansuy

L1 Aowepy

Zi L SI085e00d

011 JSOIUGT 1BI5EN

US 9,455,911 B1

Sheet 2 of 8

Sep. 27, 2016

U.S. Patent

£ FEND4
174
UORMG YoRMmg UonMmg
41213 e / oGl — | ovl e \\\\
L
zf;zzz//z l_\ \\\\\
e TN o
4
/m 0Lz
%\%/V'L\i»{lﬁ}\(\“{}
i uoEMg o Hoamg
M4 si\\ .\\a!.r\i/. T4 3\
g;fg. . — l‘t‘i.«t}l‘i&.
— (= —
IBHOHU0T ISISEN
ok |

US 9,455,911 B1

Sheet 3 of 8

Sep. 27, 2016

U.S. Patent

€ NS4
[
YopRS
oG
r 3
1940R NAS
L umms
i R
*
YL NAS

ISRORUGY IBISBY

US 9,455,911 B1

Sheet 4 of 8

Sep. 27, 2016

U.S. Patent

¥ Sunoid
M | M w 007
;oTiy oL s 90y
R ; | :
-
§
P ovov
! BT B18Q | ;
| S
_ 9Z1 SUCHONESUY |
¥Z1 Ao
oy
£71 Miged Byoums
751 BI0SSR00IH x},\}/r..,
0GL UoRG m mmm\
/.».rf&u\ﬁ\ .

ISHOLUOT IMSeN

a4y

US 9,455,911 B1

Sheet 5 of 8

Sep. 27, 2016

U.S. Patent

§ JHN9id

021 Yang

L' 0a8gt

R S

$G L ARRUBIY

7G1 SI08SR0044

OS1 Uaimg

US 9,455,911 B1

Sheet 6 of 8

Sep. 27, 2016

U.S. Patent

a3t

HE H34N0id

053

Yo
ogh

IR MOV

HORMG

weaed Yoy

IBHOALCD Jeisely

e

4194

V8 JHN0

008

YIeg

oy
HIYENAS

USRS

188084
HAOVANAS

IB{ORU0T 191SBIN

U.S. Patent Sep. 27, 2016 Sheet 7 of 8 US 9,455,911 B1

<
b
kol
{
\‘} [on] o
o W
e L
}/ I's
i 4
Son \} \';
& :
2
& B R
© - k T
Simen. ¢ /¢
x @0 @
«
1%
=

700
FIGURE 7

U.S. Patent Sep. 27, 2016 Sheet 8 of 8

US 9,455,911 B1

B~ Receive a request packet from 8 fransmilling
\mﬁ device, the request packel griginating rom a
? controlier computer

X

Genesrate a table that
holds routing data,
the fable {0 be used
{o store data that
idenfifies apath o
raute packets o the
controfler computer

~ ™. - BAF
3 /./‘/ 7
Do not ~Did request packet™.
generate i gnter througha e
table. . designated port?
-_\\ “f‘
RN e
. P
\,_\‘/ﬁ
316~ ientify routing data from the received request
e packet, the routing dala indicaling apath to
respang to the confrofier compuley
Y
830\ | Populate the generated table using the
iderntified mouting data of the request packet
4
890 Send a response packet (o the condrolier
e computer using the identified routing dala in
the populaled {able
¥
824’%,\ Establish a connection with the controlier
w' computer

200
FIGURE 8

4

US 9,455,911 B1

1
IN-BAND CENTRALIZED CONTROL WITH
CONNECTION-ORIENTED CONTROL
PROTOCOLS

BACKGROUND

In Software Defined Networking, system administrators
can use controllers to remotely control devices on a network,
such as servers and switches. OpenFlow protocol is one
method for controllers to remotely program switches. Fur-
thermore, Transmission Control Protocol (“TCP”) may be
implemented on networks employing OpenFlow technol-
ogy. On in-band centralized networks and devices, a con-
troller may attempt to indirectly establish a connection with
a target switch by forwarding packets through an interme-
diary switch. One problem in this scenario, however, is that
the target switch may not know how to respond to the
controller after receiving a packet, because the target switch
has not yet been programmed. If User Datagram Protocol
(“UDP”) was implemented, instructions to program the
switch can be sent directly to the switch in a single packet.
However, in TCP networks the target switch may not be
programmed until a TCP connection is established. In this
case, when a controller sends a packet to establish a con-
nection with a target switch, the target switch may not know
what path on a network to use to respond to the controller
because it has not yet been programmed.

SUMMARY

Aspects of the disclosure provide a computer imple-
mented system and method. The method includes receiving
a request packet from a transmitting device, the request
packet originating from a controller computer; when the
received request packet enters one of a plurality of desig-
nated ports, identifying, using one or more processors,
routing data from the received request packet, the routing
data indicating a path to respond to the controller computer;
populating, using the one or more processors, a table using
the identified routing data of the request packet; sending,
using the one or more processors, a response packet to the
controller computer using the identified routing data in the
populated table; receiving an answer packet from the con-
troller computer based on the sent response packet; and
establishing, using the one or more processors, a connection
with the controller computer based on the request packet, the
response packet, and the answer packet.

In one example, the method includes identifying specific
criteria including an IP address of the controller computer
and an identification of the transmitting device; and popu-
lating the table with the identified specific criteria. As
another example, when the transmitting device goes down,
receiving a new packet from a new transmitting device; and
replacing, in the populated table, an indication of the trans-
mitting device that has gone down with a new indication of
the new transmitting device. As a further example, when the
response packet is not confirmed at the controller computer,
prohibiting sending of future response packets to the IP
address of the controller computer for a period of time. In
another example, the method also includes receiving a set of
routing data from the controller computer; verifying the
accuracy of the routing data in the populated table by
comparing the identified routing data with the received set of
routing data; and when the set of routing is not the same as
the identified routing data, replacing the identified routing
data with the set of routing data. As another example, the
method includes verifying a digital signature in the received

20

25

30

40

45

50

2

request packet to ensure the received request packet origi-
nated from the controller computer. By way of another
example, when the connection is established with the con-
troller computer, receiving a second set of routing data from
the controller computer, the second set of routing data
including information as to where to transmit data packets;
using the second set of routing data when transmitting the
data packets; and not using the identified routing data in the
populated table to transmit the data packets.

Another aspect of the disclosure provides a system com-
prising one or more computing devices. These one or more
computing devices are configured to receive a request packet
from a transmitting device, the request packet originating
from a controller computer; when the received request
packet enters one of a plurality of designated ports, identi-
fying routing data from the received request packet, and the
routing data indicating a path to respond to the controller
computer; populate a table using the identified routing data
of the request packet; send a response packet to the con-
troller computer using the identified routing data in the
populated table; receive an answer packet from the control-
ler computer based on the sent response packet; and estab-
lish a connection with the controller computer based on the
request packet, the response packet, and the answer packet.

As another example, the system includes identifying the
routing data from the received request packet, which
includes the one or more processors being further configured
to identify specific criteria including an IP address of the
controller computer and an identification of the transmitting
device; and populate the table with the identified specific
criteria. In another example, when the transmitting device
goes down, receive a new packet from a new transmitting
device; and replace, in the populated table, an indication of
the transmitting device that has gone down with a new
indication of the new transmitting device. As another
example, when the response packet is not confirmed at the
controller computer, prohibit sending of future response
packets to the IP address of the controller computer for a
period of time. The system may also receive a set of routing
data from the controller computer; verify the accuracy of the
routing data in the populated table by comparing the iden-
tified routing data with the received set of routing data; and
when the set of routing is not the same as the identified
routing data, replace the identified routing data with the set
of routing data. In another example, the system may verify
a digital signature in the received request packet to ensure
the received request packet originated from the controller
computer. In another example, when the connection is
established with the controller computer, receive a second
set of routing data from the controller computer, the second
set of routing data including information as to where to
transmit data packets; use the second set of routing data
when transmitting the data packets; and not use the identi-
fied routing data in the populated table to transmit the data
packets.

Another aspect of the disclosure discloses a non-transitory
computer-readable storage medium on which computer
readable instructions of a program are stored, the instruc-
tions, when executed by one or more processors, cause the
one or more processors to perform a method that includes
receiving a request packet from a transmitting device, the
request packet originating from a controller computer; when
the received request packet enters one of a plurality of
designated ports, identifying, using one or more processors,
routing data from the received request packet, the routing
data indicating a path to respond to the controller computer;
populating, using the one or more processors, a table using

US 9,455,911 B1

3

the identified routing data of the request packet; sending,
using the one or more processors, a response packet to the
controller computer using the identified routing data in the
populated table; receiving an answer packet from the con-
troller computer based on the sent response packet; and
establishing, using the one or more processors, a connection
with the controller computer based on the request packet, the
response packet, and the answer packet.

As another example, the medium includes instructions for
identifying specific criteria including an IP address of the
controller computer and an identification of the transmitting
device; and populating the table with the identified specific
criteria. In that example, the medium includes instructions
for, when the transmitting device goes down, receiving a
new packet from a new transmitting device; and replacing,
in the populated table, an indication of the transmitting
device that has gone down with a new indication of the new
transmitting device. As another example, the medium
includes instructions for, when the response packet is not
confirmed at the controller computer, prohibiting sending of
future response packets to the IP address of the controller
computer for a period of time. In another example, the
medium includes instructions for receiving a set of routing
data from the controller computer; verifying the accuracy of
the routing data in the populated table by comparing the
identified routing data with the received set of routing data;
and when the set of routing is not the same as the identified
routing data, replacing the identified routing data with the set
of routing data. As another example, the medium includes
instructions for veritying a digital signature in the received
request packet to ensure the received request packet origi-
nated from the controller computer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional diagram of an example system in
accordance with aspects of the disclosure.

FIG. 2 is a pictorial diagram of the system of FIG. 1.

FIG. 3 is an example diagram illustrating sending a packet
to a target switch in accordance with aspects of the disclo-
sure.

FIG. 4 is an example diagram illustrating receiving a
packet in a designated port in accordance with aspects of the
disclosure.

FIG. 5 is an example diagram of a table in accordance
with aspects of the disclosure.

FIGS. 6A and 6B are examples illustrating sending a
response packet to a master controller and the master
controller sending an acknowledgment packet in accordance
with aspects of the disclosure.

FIG. 7 is an example illustrating a connection between a
master controller and a target switch in accordance with
aspects of the disclosure.

FIG. 8 is a flow diagram in accordance with aspects of the
disclosure.

DETAILED DESCRIPTION

Aspects of the technology relate generally to switches
responding to master controllers before establishing a secure
TCP connection in an in-band controlled network. When a
master controller attempts to indirectly connect to a second
switch through the use of a first switch by sending a packet,
the second switch may generate and populate a table after
receiving the packet. By populating this table, the switch
may establish a path to respond to the master controller on

25

35

40

45

50

4

a network. After the second switch sends its response, a
secure connection may be established between the two
devices shortly thereafter.

The master controller may send a synchronize (“SYN”)
packet to a switch, the switch responds with a synchronize
and acknowledgement (“SYN+ACK”) packet, and then the
controller responds with an acknowledgement (“ACK”)
packet to complete the connection. This process to establish
a connection between devices is referred to, in one example,
as a three-way handshake. In other examples, a second
switch may not be directly connected to the master control-
ler. Rather, the second switch may be connected to a first
switch, the first switch of which is in turn connected to the
master controller. In addition, the second switch may be
connected to multiple switches that may or may not be
connected to the master controller.

In this regard, the master controller may send a SYN
packet, for example, to the second switch via the first switch.
Because there is not an established connection between the
master controller and the second switch, the second switch
may not know which interface (or switch) to use to respond
to the master controller. As a result, when the second switch
receives the SYN packet, the second switch will generate
and populate a table with information that will indicate a
path to send a response packet to the master controller. In
this regard, a switch, such as the second switch, may learn
and store information in a table for each master controller
that the switch receives a packet from.

In order for the second switch to acquire the information
necessary to populate the table, the master controller may
send the packet to specific ports of the second switch. Once
the second switch obtains a packet via at least one desig-
nated port, the second switch may learn and store the
necessary information to populate the table.

The populated table may include the IP address of the
master controller and the last interface used (e.g., the first
switch). This information may give the second switch a path
for outgoing management of connections with the master
controller. Once the switch knows the path to respond to the
master controller, a secure connection using TCP may be
established between the two devices

In another example, a switch on the network may alter its
own populated table if one of the interfaces goes down. For
instance, if the first switch goes down and the second switch
receives packets from a third switch, then the third switch
may replace the first switch as the last interface used in the
table.

In another example, a switch may learn and store infor-
mation in the table only until a secure connection is estab-
lished with the master controller. When a secure connection
is established between the switch and the master controller,
the switch will re-evaluate the table to verify the accuracy of
the information. In another example, a digital signature may
be added to the packets the master controller sends. In this
instance, the switch may verify the packet’s signature upon
receipt, and determine whether the SYN packet is from a
viable source or not (e.g., a spoofing attack).

As a further example, the switch may generate a table
only if the switch is not connected to a master controller.
Otherwise, if the switch is connected to a master controller,
the master controller will be responsible to program the
correct outgoing interface for the switch. In yet another
example, the switch’s table may be verified by confirmation
over a secure channel. For example, if the response from the
switch can be verified at the master controller, then the
outgoing interface path may be confirmed. On the other
hand, if the switch’s outgoing interface cannot be confirmed,

US 9,455,911 B1

5

then the switch will ban that particular interface for a period
of time. This may prevent a Denial of Service attack from a
particular interface.

FIG. 1 illustrates an example system 100 in which the
features described above may be implemented. It should not
be considered as limiting the scope of the disclosure or
usefulness of the features described herein. As shown,
system 100 includes as a master controller 110 and a
plurality of switches 120, 130, 140, 150 and 160 intercon-
nected via network 105.

The switches may be any computing device which is
capable of sending and receiving data. Switch 120 contains
one or more processors 122, memory 124 and other com-
ponents typically present in switching devices. Memory 124
of switch 120 can store information accessible by one or
more processors 122, including instructions 126 that can be
executed by the one or more processors 122. The switching
device may include a switching fabric 123 for forwarding
the data frames (or packets) that the switch 120 receives. The
method in which the switching fabric 123 forwards these
frames may be controlled by the processors 122. The switch-
ing device may also include ports (not shown) for ingress
and egress of data frames.

The processors on the switches may receive input and
provide output as necessary. As an example, processors 122
of switch 120 may be responsible for handling system
instructions 126, including where to transmit data.

Memory 124 stores information that is accessible by the
processors 122 including instructions 126 that may be
executed by the processors 122 and data 128. The memory
124 may include any type of non-transitory memory opera-
tive to store information accessible by the processor 122, or
other medium that stores data that may be read with the aid
of an electronic device. This may include a hard-drive,
memory card, read-only memory (“ROM”), or random
access memory (“RAM”).

The instructions 126 may be any set of instructions to be
executed directly (such as machine code) or indirectly (such
as scripts) by the processors 122. For example, the instruc-
tions 126 may be stored as computer code on the computer-
readable medium. The instructions 126 may be stored in
object code format for direct processing by the processor
122 or in any other computer language including scripts or
collections of independent source code modules that are
interpreted on demand or compiled in advance. Instructions
126 may include where certain data packets should be sent
upon receipt of the data packets.

The data 128 may be retrieved, stored or modified by the
processors 122 in accordance with the instructions 126. For
instance, although the system and method is not limited by
any particular data structure, the data 128 may be stored in
computer registers and the data may be formatted in any
computer-readable format. The data may be stored in for-
warding tables which include the addresses and output ports
that the processor 122 may access to know where to send
data packets.

Each processor 122 may be any conventional processor,
such as processors in commercially available routers. Alter-
natively, the processor may be a dedicated controller such as
an ASIC or other hardware-based processor. The processor
and memory may actually comprise multiple processors and
memories that may or may not be stored within the same
physical housing. For example, memory may be a hard drive
or other storage media located in a server farm of a data
center. Accordingly, references to a processor, memory, or

10

15

20

25

30

35

40

45

50

55

60

65

6

computer will be understood to include references to a
collection of processors, memories or computers that may or
may not operate in parallel.

Switch 130 may contain one or more processors 132,
memory 134, instructions 136, and data 138, which may
function similarly as described above with regard to pro-
cessors 122, memory 124, instructions 126, and data 128 of
switch 120. Switch 140 may contain one or more processors
142, memory 144, instructions 146, and data 148, which
may function similarly as described above with regard to
processors 122, memory 124, instructions 126, and data 128
of switch 120. Switch 150 may contain one or more pro-
cessors 152, memory 154, instructions 156, and data 158,
which may function similarly as described above with
regard to processors 122, memory 124, instructions 126, and
data 128 of switch 120. Switch 160 may contain one or more
processors 162, memory 164, instructions 166, and data 168,
which may function similarly as described above with
regard to processors 122, memory 124, instructions 126, and
data 128 of switch 120.

Master controller 110 may be any type of computing
device capable of programming switches and transmitting
instructions to a switch, for example, using a given protocol.
As shown, the master controller comprises a memory 114,
including instructions 116 and data 118, and one or more
processors 112, which may function similarly as described
above with regard to processors 122, memory 124, instruc-
tions 126, and data 128 of switch 120.

Switches 120, 130, 140, 150 and 160 and master control-
ler 110 can be at various nodes of the network 105 and are
capable of directly and indirectly communicating with other
nodes of the network. Although only a few computing
devices are depicted in FIG. 1, it should be appreciated that
a typical system can include a large number of connected
computing devices, with each different device being at a
different node of the network 105. Computing devices may
include at least switches, controllers, servers and personal
computers. The network 105 and intervening nodes
described herein can be interconnected using various pro-
tocols and systems, such that the network can be part of the
Internet, World Wide Web, specific intranets, wide area
networks, or local networks. The network can utilize stan-
dard communications protocols, such as Ethernet, WiFi and
HTTP, protocols that are proprietary to one or more com-
panies, and various combinations of the foregoing. Although
certain advantages are obtained when information is trans-
mitted or received as noted above, other aspects of the
subject matter described herein are not limited to any
particular manner of transmission of information.

As noted above, in TCP networks the three-way hand-
shake may be required in order to establish a connection
between devices. In example 200 of FIG. 2, master control-
ler 110 may seek to establish a connection with switch 120.
In this regard, the master controller 110 may send a SYN
packet to switch 120. Switch 120 may respond by sending
a SYN+ACK packet to master controller 110. To finalize the
connection, the master controller 110 may respond to the
switch 120 with an ACK packet. The master controller 110
may similarly establish a connection with any directly
connected switch, such as switch 130. In this regard, the
direct connection between the master controller and the
switch indicates that there are no intermediary switches in
the connection between the master controller and the switch.

In some aspects, a master controller may seek to establish
a connection with a switch through the use of another
switch. Example 200 of FIG. 2 shows the master controller
110 directly connected to switches 120 and 130 over net-

US 9,455,911 B1

7

work 205. In other words, there are no intermediary switches
between the master controller 110 and switch 120, or
between the master controller 110 and switch 130. In this
regard, master controller 110 may not have a direct connec-
tion with switches 140, 150, and 160; rather, the master
controller 110 has an indirect connection with switches 140,
150, and 160. The indirect connection is when the master
controller communicates with a switch through the use of at
least one other intermediate switch. As shown in example
200 of FIG. 2, the master controller 110 may need to
communicate through switch 120 and/or switch 130 as a
medium or intermediary in order to connect with switches
140, 150 and 160. In this regard, switches 120 and 130 may
be considered intermediary switches and switches 140, 150
and 160 may be considered target switches.

When the master controller seeks to initiate a connection
with a target switch, the master controller may send a packet
through an intermediary switch. For example, in example
200, master controller 110 may want to establish a connec-
tion with target switch 150. In this regard, the master
controller sends a packet to an intermediary switch, which
will then forward the packet to target switch 150. For
instance, example 300 of FI1G. 3 shows the master controller
110 sending a SYN packet to intermediary switch 120, and
the intermediary switch 120 forwarding the same SYN
packet to target switch 150. Alternatively, a master control-
ler may send a SYN packet to any intermediary switch as a
means to transmit a packet to any target switch. For
example, referring back to example 200 of FIG. 2, if the
master controller 110 wants to send a packet to target switch
140, then master controller 110 may send a packet to
intermediary switch 130. From here, the intermediary switch
130 may forward the received SYN packet to target switch
140.

After the target switch receives the packet, the target
switch may determine whether certain conditions are met.
One condition may be that the received packet originated
from a controller, such as master controller 110. An example
of this condition may be seen in example 400 of FIG. 4,
where master controller 110 sends a packet to target switch
150. Another condition may be that the received request
packet entered a designated port of the target switch. In
example 400, target switch 150 includes a plurality of ports
402, 404, 406, 408, 410 and 412, the designated ports 404,
408 and 412 of which are indicated by dotted lines. In this
example, the condition is satisfied because the received
packet sent from the master controller 110 enters designated
port 404.

Before or after the target switch determines whether the

conditions are met, the target switch may identify certain
data from the received packet. The identified data is used to
ascertain a path to the controller computer 110. In this
regard, the data may be considered routing data. By way of
example only, the gathered routing data may include the IP
address of the master controller and the last interface used to
transmit the packet to the target switch.
In one aspect, the target switch populates a table with the
identified routing data. For example, as shown in example
500 of FIG. 5, the target switch 150 populates the table with
routing data to identify a path to the controller computer 110.
The routing data in the populated table included the master
controller’s IP address and the last interface that sent the
SYN packet to the target switch, here switch 120.

The target switch is able to respond to the master con-
troller with the routing data in the populated table. The target
switch may respond to the master controller, for example, by
sending a SYN+ACK packet to the master controller. As

15

20

40

45

55

8

shown in example 600 of FIG. 6A, the target switch 150
sends the response to intermediary switch 120. The inter-
mediary switch 120 may be used because it was the last
interface used, as shown in the populated table in example
500 of FIG. 5. In addition, using the stored IP address of the
master controller 110, as shown in example 500 of FIG. 5,
the target switch sends the SYN+ACK packet to the appro-
priate IP address. The target switch sends this stored IP
address with the SYN+ACK packet to the intermediary
switch 120 so that the intermediary switch 120 knows where
to forward the SYN+ACK packet. Example 600 illustrates
the target switch sending the SYN+ACK packet to interme-
diary switch 120, and intermediary switch 120 forwarding
the received packet to the master controller 110.

After the target switch responds to the master controller,
an established TCP connection between the two devices may
be established. For example, as shown in example 600, the
master controller 110 receives the SYN+ACK packet from
target switch 150. And, example 650 of FIG. 6B shows the
master controller 110 sending an ACK packet back to the
target switch 150 via intermediary switch 120. Upon the
target switch 150 receiving the ACK packet, a secure TCP
connection is established, concluding the three-way hand-
shake. As a result, example 700 of FIG. 7 illustrates that a
connection between the master controller 110 and the target
switch 150 has been established.

FIG. 8 is an example flow diagram 800 of certain features
described above, which may be performed by one or more
computing devices, such as master controller 110 and/or
switches 120, 130, 140, 150, and 160. In this example, a
computing device receives a request packet from a trans-
mitting device at block 810. The request packet originates
from a controller computer. The computing device then
determines whether the request packet entered through a
designated port of the computing device at block 812. If no,
then the computing device will not generate a table, as
shown at block 814. If yes, then the computing device
generates a table that holds routing data at block 816. The
table is used to store data that identifies a path for the
computing device to route packets to the controller computer
at block 816. The computing device then identifies routing
data from the received request packet at block 818. Once the
routing data is identified, the computing device may popu-
late the generated table using the identified routing data of
the received request packet at block 820. Once the table is
populated, the computing device sends a response packet to
the controller computing using the identified routing data in
the populated table, as shown at block 822. Once the
computing device receives the final packet, the computing
device establishes a connection with the controller computer
at block 824.

If one of the intermediary switches or interfaces on the
network goes down, the target switches may alter the
populated tables to reflect this change. For instance, refer-
ring back to example 200, target switch 150 may be com-
municating with master controller 110 through intermediary
switch 120. If intermediary switch 120 goes down, then
target switch 150 may receive a packet from intermediary
switch 130 instead. In this case, target switch 150 may
replace intermediary switch 120 as the “last interface used”
with intermediary switch 130.

A target switch may also learn and store information in a
table only until a secure connection is established with the
master controller. When a secure connection is established
between the target switch and the master controller, the
target switch may re-evaluate the data in the table to verify
the accuracy of the information. By way of example, the

US 9,455,911 B1

9

master controller may program the switch by sending the
necessary data (e.g. routing data) to the target switch. In this
regard, the target switch may use the routing data that it
receives from the master controller to communicate with the
master controller.

In another example, a digital signature may be added to
the packets the master controller sends. In this instance, the
target switch may verify the packet’s signature upon receipt,
and determine whether the packet is from a viable source or
not (e.g., a potential spoofing attack). By way of example
only, the master controller may the SYN packet to the target
switch by using a private key. Upon receipt of the private
key, the target switch may decode the private key by using
a public or private key of its own, thereby determining the
viability of the original source.

As another example, the target switch may generate a
table only if the target switch is not connected to a master
controller. Otherwise, if the target switch is connected to a
master controller, the master controller will be responsible
for programming the correct outgoing interface for the target
switch. For example, in one scenario if a secure connection
between a master controller and a target switch is already
established, the master controller will be responsible, in this
example, for programming a viable outgoing interface for
the target switch to follow. In addition, the target switch may
not have to populate a table in this scenario.

The target switch’s table may also be verified by confir-
mation over a secure channel. For example, if the response
from the target switch can be verified at the master control-
ler, then the IP address may be confirmed. In this case, if the
target switch’s stored IP address cannot be confirmed, then
the target switch will ban that particular IP address for a
period of time. This may prevent a potential Denial of
Service attack from a particular interface. For instance, the
period of time may be on the order of tens of seconds. By
way of example only, the period of time may be 30 seconds.
In another example, the period of time may be between
10-60 seconds, although the time period may be longer or
shorter.

Most of the foregoing alternative examples are not mutu-
ally exclusive, but may be implemented in various combi-
nations to achieve unique advantages. As these and other
variations and combinations of the features discussed above
can be utilized without departing from the subject matter
defined by the claims, the foregoing description of the
embodiments should be taken by way of illustration rather
than by way of limitation of the subject matter defined by the
claims. As an example, the preceding operations do not have
to be performed in the precise order described above. Rather,
various steps can be handled in a different order or simul-
taneously. Steps can also be omitted unless otherwise stated.
In addition, the provision of the examples described herein,
as well as clauses phrased as “such as,” “including” and the
like, should not be interpreted as limiting the subject matter
of the claims to the specific examples; rather, the examples
are intended to illustrate only one of many possible embodi-
ments. Further, the same reference numbers in different
drawings can identify the same or similar elements.

The invention claimed is:

1. A method of in-band centralized control of a software-
defined network, comprising:

receiving, at a designated port of a first network device, a

request packet from a second network device, the
request packet originating from a controller computer
separate from the second network device;

identifying, using one or more processors of the first

network device, routing data from the request packet,

10

the routing data indicating a path to respond to the
controller computer via the second network device;
populating, using the one or more processors, a table
using the routing data, wherein populating the table
5 includes populating the table with an IP address of the
controller computer and an identification of the second
network device;
sending, using the one or more processors, a response
packet to the controller computer using the routing data
in the table;

receiving, at the first network device, an answer packet

from the controller computer; and
establishing, using the one or more processors, a soft-
ware-defined networking control connection with the
controller computer via the second network device
based on the request packet, the response packet, and
the answer packet.
2. The method of claim 1, further comprising:
receiving, at the first network device, an indication that
the second network device has gone offline;

receiving, at the first network device, a new packet from
a third network device;

identifying, using the one or more processors, second
routing data from the new packet, the second routing
data indicating a second path to respond to the con-
troller computer via the third network device; and

replacing, in the table, the routing data with the second
routing data.

3. The method of claim 1, further comprising, when the
response packet is not confirmed at the controller computer,
prohibiting sending of future response packets to the IP
address of the controller computer for a period of time.

4. The method of claim 1, further comprising:

receiving, at the first network device, a set of routing data

from the controller computer;

determining, by the one or more processors, that the

routing data in the table is not the same as the set of
routing data; and

replacing, by the one or more processors responsive to the

determination, the routing data in the table with the set
of routing data.

5. The method of claim 1, further comprising verifying,
by the one or more processors, a digital signature in the
request packet to ensure the request packet originated from
the controller computer.

6. The method of claim 1, further comprising:

receiving, at the first network device, a second set of

routing data from the controller computer, the second
set of routing data including information as to where to
transmit data packets; and

using the second set of routing data instead of the routing

data when transmitting the data packets.

7. A system for in-band centralized control of a software-
55 defined network, the system comprising a first network
device comprising one or more processors configured to:

receive, at a designated port of the first network device, a

request packet from a second network device, the
request packet originating from a controller computer
separate from the second network device;
identify routing data from the received request packet, the
routing data indicating a path to respond to the con-
troller computer via the second network device;

populate a table using the routing data wherein populating
the table includes populating the table with an IP
address of the controller computer and an identification
of the second network device;

15

20

25

30

35

40

45

50

60

65

US 9,455,911 B1

11

send a response packet to the controller computer using

the routing data in the table;

receive an answer packet from the controller computer;

and

establish a software-defined networking control connec-

tion with the controller computer via the second net-
work device based on the request packet, the response
packet, and the answer packet.

8. The system of claim 7, wherein the one or more
processors are further configured to:

receive an indication that the second network device has

gone offline;

receive a new packet from a third network device;

identify second routing data from the new packet, the

second routing data indicating a second path to respond
to the controller computer via the third network device;
and

replace, in the table, the routing data with the second

routing data.

9. The system of claim 7, wherein the one or more
processors are further configured to, when the response
packet is not confirmed at the controller computer, prohibit
sending of future response packets to the IP address of the
controller computer for a period of time.

10. The system of claim 7, wherein the one or more
processors are further configured to:

receive a set of routing data from the controller computer;

determine that the routing data in the table is not the same

as the set of routing data; and

replace, responsive to the determination, the routing data

in the table with the set of routing data.
11. The system of claim 7, wherein the one or more
processors are further configured to verify a digital signature
in the request packet to ensure the request packet originated
from the controller computer.
12. The system of claim 7, wherein the one or more
processors are further configured to:
receive a second set of routing data from the controller
computer, the second set of routing data including
information as to where to transmit data packets; and

use the second set of routing data instead of the routing
data when transmitting the data packets.

13. A non-transitory computer-readable storage medium
on which computer readable instructions of a program are
stored, the instructions, when executed by one or more
processors, cause the one or more processors to perform a
method comprising:

receiving, at a designated port of a first network device, a

request packet from a second network device, the
request packet originating from a controller computer
separate from the second network device;

12

identifying, using one or more processors of the first
network device, routing data from the request packet,
the routing data indicating a path to respond to the
controller computer via the second network device;

5 populating, using the one or more processors, a table
using the routing data wherein populating the table
includes populating the table with an IP address of the
controller computer and an identification of the second
network device;

sending, using the one or more processors, a response

packet to the controller computer using the routing data
in the table;

receiving, at the first network device, an answer packet

from the controller computer; and
establishing, using the one or more processors, a soft-
ware-defined networking control connection with the
controller computer via the second network device
based on the request packet, the response packet, and
the answer packet.
14. The medium of claim 13, wherein the method further
comprises:
receiving, at the first network device, an indication that
the second network device has gone offline;

receiving, at the first network device, a new packet from
a third network device;

identifying, using the one or more processors, second
routing data from the new packet, the second routing
data indicating a second path to respond to the con-
troller computer via the third network device; and

replacing, in the table, the routing data with the second
routing data.

15. The medium of claim 13, wherein the method further
comprises, when the response packet is not confirmed at the
controller computer, prohibiting sending of future response
5 packets to the IP address of the controller computer for a
period of time.

16. The medium of claim 13, wherein the method further
comprises:

receiving, at the first network device, a set of routing data

from the controller computer;

10

15

20

25

30

]

40
determining, by the one or more processors, that the
routing data in the table is not the same as the set of
routing data; and
replacing, by the one or more processors responsive to the
45 determination, the routing data in the table with the set

of routing data.

17. The medium of claim 13, wherein the method further
comprises verifying, by the one or more processors, a digital
signature in the request packet to ensure the request packet

50 originated from the controller computer.

#* #* #* #* #*

